Differential Equations & Modeling

- Differential equations are used to model different types of phenomena.
- Applications:
 - Engineering
 - Especially useful in fluid dynamics, thermodynamics, and mass transfer
 - o Physics
 - Differential equations model motion and response to forces
 - Flow of charge in a circuit
 - Economic models
 - o Statistical analysis
 - Psychology and Sociology
 - There are mathematical models as to how people behave.
 - Ordinary Differential Equation vs. Partial Differential Equation
 - Ordinary differential equations involve only ordinary derivatives.
 - Partial differential equations involve partial derivatives.
- Linear vs. Nonlinear
 - Linear means linear in its orders of derivatives
 - Example: $y''+2x^2y = 7x^3 + 5$ is linear.
 - Example: $y''+2x^2y^2 = 7x^3 + 5$ and $(y'')^2 + 2x^2y = 7x^3 + 5$ are not linear.
- Homogeneous vs. Nonhomogeneous
 - Homogeneous means that there is no term that does not involve y or any derivative of y in any way.
 - Example: $y''+2x^2y^2 = 0$ is homogeneous
 - Example: $y''+2x^2y^2 = 7x^3 + 5$ is not homogeneous
- Initial Value Problem: Solve a differential equation given conditions at one point.
 - Example: Solve $\frac{dy}{dx} = f(x, y)$ given $y(x_o) = y_o$
 - Substitute initial conditions to find the solution to an initial value problem
- **Boundary Value Problem**: Solve a differential equation given conditions at the ends of an interval.
 - Example: Solve ay''+by'+cy = f(x) given $y(x_1) = y_1$ and $y(x_2) = y_2$
 - Substitute boundary conditions to find the solution to a boundary value problem.